USER’S MANUAL
for
8-bit Object File Tool
2022.01.26

Lucid Technologies
http://www.lucidtechnologies.info/
Email: info@lucidtechnologies.info

Copyright © 2016-2022 by Lucid Technologies
All rights reserved

LEGAL STUFF

The information in this manual has been carefully checked and is believed to be accurate. However,
Lucid Technologies makes no warranty for the use of its products and assumes no responsibility for
any errors which may appear in this document. Lucid Technologies reserves the right to make
changes in the products contained in this manual in order to improve design or performance and to
supply the best possible product.

Lucid Technologies assumes no liability arising out of the application or use of any product. Lucid
Technologies’ products should NEVER be used in, or to support, safety critical applications such as
medical, industry automation, automotive, or transport.

8-bit Object File Tool software by Lucid Technologies is distributed as FREEWARE. FREEWARE
is covered by copyright and subject to the conditions defined by the holder of the copyright. Lucid
Technologies retains the Copyright for 8-bit Object File Tools. Users may not modify the software
or sell copies to others. FREEWARE software may not be modified or extended and then sold as
COMMERCIAL or SHAREWARE software.

(C) Lucid Technologies 2

CONTENTS

1.0 Features

2.0 Introduction

3.0 System Requirements

4.0 Program Operation
4.1 Program Windows

4.2 Load

4.3 Display
4.4 Relocate
4.5 Save as

4.6 Compare
4.7 Merge
4.8 Quit

5.0 Bugs, Suggestions and Donations

Appendix A
Appendix B
Appendix C

Appendix D

ASCII character codes
Intel 8-bit HEX-record format
Motorola 8-bit S-record format

Straight-Hex format

(C) Lucid Technologies

8-bit Object File Tool Software

1.0 Features

. Can load Intel HEX-record and Motorola S-record files

. Can display data in hexadecimal and ASCII character formats

. Can compare memory images of any two files

. Can change the load (base) address of any loaded file

. Can merge loaded files

. Can save any loaded file in either Intel HEX-record or Motorola S-record format
> Execution address for S-record files can be changed

2.0 Introduction

Lucid Technologies’ 8-bit Object File Tool is was designed to work with object files
intended for traditional 8-bit microcomputers and microcontrollers. It is a handy tool to convert files
from Motorola S-record format to Intel HEX-record format and vice versa, to compare files to see if
files of different names result in the same memory content, and to observe any ASCII text that may
be embedded in the file.

3.0 System Requirements

Lucid Technologies’ 8-bit Object File Tool was written for Windows systems. It has been
tested on WindowsXP and Windows10. It is distributed as a ZIP archive. Create a new folder under
Program Files, such as C:\Program Files\8-bit tool, and extract the contents of the ZIP archive to
this directory. Click on 8-bit object file tool V300.exe to run the program. The program files take
approximately 3 MB of hard disk space.

4.0 Program Operation
Click on the executable file - O %

(*.exe) to open the program. The

program maintains c()mp]ete 64k Select the erased state of the target

memory images for both object files. device; this is usually FF hex.

These images are initialized to the

erased value of the target EPROM or Q 0x00

microcontroller. The first window that @ OxEF OK

opens is for the selection of the erased

value. Erased bytes in most devices

read as OxFF but some, such as the

MC68701, read as 0x00. You may Figure 1 Erased value.

select either 0x00 or OxFF. The erased

value is assumed to be the same for both File 1 and File 2, otherwise comparing the two files would
not make sense.

4.1 Program Windows

After selecting the erased value the program will open two windows: the Display window
and the Control window.

The Display Window is a text output window. It is used to show errors that may be
encountered while loading an object file, loaded data, or the result of comparing File 1 to File 2.

(C) Lucid Technologies 4

8-bit Object File Tool Software

The Control Window has mouse clickable buttons that control the program. Initially the only

active buttons on the Control window are the Load buttons for File 1 and File 2. After successfully
loading a file the other buttons for that file will be enabled. Figure 2 shows the Control window
after loading File 1. After both files are loaded the Compare and Merge buttons are enabled.

e — — e — ——————————————————————————

* Tool — ¥ |

8-BIT OBJECT FILE TOOL

Figure 2 Control Window after loading File 1.

FILE 1 FILE 2
Load Load
Display Display
Relocate Relocate

Save a=s 815 Save
Save as Intel HEX Save as Intel HEX
Save as Straight—-hex Save as Straight-hex

el sl = = 1]

QUIT

4.2 Load

Clicking on the Load button for either file will bring up a standard file selection window.

You can select files whose extensions are HEX, S19 or TXT. The program automatically detects
whether the file is of Intel-HEX or Motorola-S19 type, even if it has a TXT extension. The load
process checks for several errors. If an error is encountered one of the following messages will be
shown in the Display Window:

"Not a valid object file!"

"Invalid record type in line _ !"

"End of file record is not last line of file!"
"Incorrect check sum in line __ !"

"Incorrect byte count in line !

If the file loads successfully the remainder of the menu buttons for that file will be enabled.

The execution address from the termination record is stored for use in the Save as S19

(C) Lucid Technologies 5

8-bit Object File Tool Software

option. The execution address for HEX-record files is always 0000; the execution address for S-
record files may be any address in the 64k address space.

4.3 Display

Clicking on the Display button for either file will display the non-erased memory locations
for that file in 16 byte segments. Any 16 byte segment in the 64k memory image with at least one
byte that is not erased will be shown in the Display Window. Figure 3 shows the layout of the data
display. The first line shows the file name and “DATA DISPLAY”. The second line is the column
headers. The third and following lines are the actual address and data. In Figure 3 the third line
shows the 16 bytes from address 0000 to 000F in hexadecimal format and then as ASCII characters.

51 okay testc.51% DATA DISPLAY

{ 2dr |-—————————————— Hex data - ———————————————-— | |- ASCII data -—|
joODD 28 SF 24 SF 22 12 22 6A 00 04 24 29 00 08 23 7C (& "."j..%)..#]|
0010 00 02 Q00 O8 OO0 08 26 29 00 18 53 81 23 41 00 18 £} ..5%#A..

0020 41 E9 00 08 4E 42 23 43 00 18 23 42 00 08 24 A9 Ae..HB#C..#B..56

0030 00 14 4E D4 FF FF FF FF FF FF FF FF FF FF FF FF ..NOGUVS9vvv9viv

Figure 3 Data display for the file “S1 okay test.S19".

4.4 Relocate

Imagine you have a MC6803 8-bit processor with four different 2k boot programs (Boot1-4)
stored in a 2764 EPROM. The top two address bits on the 2764 are used to select which 2k segment
maps from F800 to FFFF. The four boot programs are all assembled to run at F800 but their
locations in the EPROM will start at 0000 (Boot1), 0800 (Boot2), 1000 (Boot3) and 1800 (Boot4).
The Relocate option would allow you to move a boot program’s code from a starting (base) address
of F800 to any of the proper boundaries. Relocate can change the starting (base) address of a loaded
program from any address to any other address, up or down, provided the program is still contained
within the 64k address space. See 4.7, the Merge option.

4.5 Save as

Save as Intel HEX button. Clicking on the Save as Intel HEX button for either file will
bring up a standard file selection window. Enter a file name, click on Save and the file will be
saved in Intel HEX format. Each HEX-record in the saved file will have 16 data bytes. Any 16 byte
segment in the 64k memory image with at least one byte that is not erased will be saved as a HEX-
record.

Save as S19 button. Unlike the termination HEX-record (type 00) where the address is
always zero, the address in a termination S-record (type S9) can have a non-zero address. This
address is used for directly executable code, it is the 2-byte address of the instruction to which
control is to be passed after the S-record file is loaded. Most assemblers don’t provide an option to
set this address in the object file therefore it is handy to have a tool that can do this. After clicking
on the Save as S19 button and entering the save file name you will be shown the current execution
address for the file and asked if you want to change it, see Figure 4. If you respond Yes, you will be
prompted to enter an new execution address as a four character hexadecimal value, see Figure 5.

(C) Lucid Technologies 6

8-bit Object File Tool Software

Valid characters are 0-9, a-f, and A-F.

o The execution address for this file is 0000, Do you want to change it?

Yes Mo

Figure 4 Prompt for option to change S-record file execution address.

Enter four character hex address.

ak. Cancel

Figure S Prompt for new execution address.

Save as Straight-hex button. Clicking on the Save as Straight-hex button for either file will
bring up a standard file selection window. Enter a file name, click on Save and the file will be
saved in Straight-hex format with a SHX extension. Straight-hex files contain only the program data
in ASCII hex format, see Appendix D. Because they do not contain address data, straight-hex files
cannot be reloaded by the 8-bit Tool program, but can be used by simple device programmers.

4.6 Compare

The Compare File 1 to File 2 button will be only be enabled when both files are successfully
loaded. Clicking on the Compare button will show the first line of Figure 6 in the Display Window.
If no differences are found the message “No differences found” will be shown. In the example of
Figure 6 we see seven differences at addresses 0000-0006. At address 0000 File 1 (S1 okay test.S19)
is 0x28 while File 2 (Hex okay test. HEX) is OxFF.

ddre=s= 51 okay tesat.S5185 Hex okay test.HEX

0000 28 FF
0001 SF FF
0002 24 FF
0003 SF FF
0004 22 FF
0005 12 FF
0006 22 FF
Figure 6 Compare files example.

(C) Lucid Technologies 7

8-bit Object File Tool Software

4.7 Merge

We will continue the example used in section 4.4, Relocate. To generate a file to program a
2764 with four separate boot programs, first load Boot1 into File 1. Relocate File 1 to 0000. Now
load Boot2 into File 2 and relocate it to 0800. Then select the Merge button. File 2 (Boot2) will be
stacked on top of Boot1 in File 1. Next you can Load Boot3 into File 2, Relocate it to 1000, and
Merge it with Boot1 and Boot 2 in File 1. Load Boot4 into File 2, Relocate it to 1800, and merge it
with Boot1-3 in File 1. Finally, save the image for the entire 2674 EPROM from File 1 as either
* HEX or *.S19.

4.8 Quit
The Quit button will end the program.

5.0 Bugs, Suggestions and Donations

The most current version of 8-bit Object File Tool should always be available at
www.lucid.technologies.info. If you discover any bugs or have suggestions for improving the
program please send them to info@lucidtechnologies.info.

If you find 8-bit Object File Tool useful and would like to send a donation to Lucid
Technologies you can do so via PayPal (http://www.lucidtechnologies.info/pay card.htm).

(C) Lucid Technologies 8

http://www.lucid.technologies.info.
mailto:info@lucidtechnologies.info.
(http://www.lucidtechnologies.info/pay_card.htm).

8-bit Object File Tool Software

APPENDIX A
ASCII CHARACTER CODES

The first 32 characters in the ASCII (American Standard Code for Information Interchange)
table are unprintable control codes and are used to control peripherals such as printers.

ASCII control characters (character codes 0x00-0x1F)

DEC HEX | Symbol Description
0 0 NUL Null char
1 1 SOH Start of Header
2 2 STX Start of Text
3 3 ETX End of Text
4 4 EOT End of Transmission
5 5 ENQ Enquiry
6 6 ACK Acknowledgment
7 7 BEL Bell
8 8 BS Backspace
9 9 HT Horizontal Tab
10 0A LF Line Feed
11 0B VT Vertical Tab
12 0C FF Form Feed
13 0D CR Carriage Return
14 OE SO Shift Out
15 OF SI Shift In
16 10 DLE Data Line Escape
17 11 DC1 Device Control 1 (often XON)
18 12 DC2 Device Control 2
19 13 DC3 Device Control 3 (often XOFF)
20 14 DC4 Device Control 4
21 15 NAK Negative Acknowledgment
22 16 SYN Synchronous Idle
23 17 ETB End of Transmit Block
24 18 CAN Cancel
25 19 EM End of Medium
26 1A SUB Substitute
27 1B ESC Escape
28 1C FS File Separator
29 1D GS Group Separator
30 1E RS Record Separator
31 1F us Unit Separator

(C) Lucid Technologies 9

8-bit Object File Tool Software

Codes 32-127 decimal, 0x20-0x7F hexadecimal, are called the 7-bit or printable characters.
They represent letters, digits, punctuation marks, and a few miscellaneous symbols. You will find
almost every character on your keyboard.

DEC HEX Symbol Description
32 20 Space
33 21 I Exclamation mark
34 22 " Double quotes
35 23 # Number
36 24 $ Dollar
37 25 % Percent
38 26 & Ampersand
39 27 ! Single quote
40 28 (Open parenthesis
41 29) Close parenthesis
42 2A * Asterisk
43 2B + Plus
44 2C Comma
45 2D - Hyphen
46 2E . Period, dot or full stop
47 2F / Slash or divide
48 30 0 Zero
49 31 1 One
50 32 2 Two
51 33 3 Three
52 34 4 Four
53 35 5 Five
54 36 6 Six
55 37 7 Seven
56 38 8 Eight
57 39 9 Nine
58 3A : Colon
59 3B ; Semicolon
60 3C < Less than
61 3D = Equals
62 3E > Greater than
63 3F ? Question mark
64 40 @ At symbol
65 41 A Uppercase A
66 42 B Uppercase B
67 43 C Uppercase C
68 44 D Uppercase D
69 45 E Uppercase E
70 46 F Uppercase F
71 47 G Uppercase G
72 48 H Uppercase H
73 49 I Uppercase 1
74 4A J Uppercase]
75 4B K Uppercase K
76 4C L Uppercase L
77 4D M Uppercase M

(C) Lucid Technologies 10

8-bit Object File Tool Software

DEC HEX Symbol Description
78 4E N Uppercase N
79 4F 0 Uppercase O
80 50 P Uppercase P
81 51 Q Uppercase Q
82 52 R Uppercase R
83 53 S Uppercase S
84 54 T Uppercase T
85 55 U Uppercase U
86 56 Vv Uppercase V
87 57 W Uppercase W
88 58 X Uppercase X
89 59 Y Uppercase Y
90 5A VA Uppercase Z
91 5B [Opening bracket
92 5C \ Backslash
93 5D] Closing bracket
94 5E A Caret - circumflex
95 5F _ Underscore
96 60 i Grave accent
97 61 a Lowercase a
98 62 b Lowercase b
99 63 C Lowercase ¢
100 64 d Lowercase d
101 65 e Lowercase e
102 66 f Lowercase f
103 67 g Lowercase g
104 68 h Lowercase h
105 69 I Lowercase I
106 6A j Lowercase j
107 6B k Lowercase k
108 6C I Lowercase |
109 6D m Lowercase m
110 6E n Lowercase n
111 6F 0 Lowercase 0
112 70 p Lowercase p
113 71 q Lowercase q
114 72 r Lowercase r
115 73 S Lowercase s
116 74 t Lowercase t
117 75 u Lowercase u
118 76 \% Lowercase v
119 77 w Lowercase w
120 78 X Lowercase x
121 79 y Lowercase y
122 7A ya Lowercase z
123 7B { Opening brace
124 7C | Vertical bar
125 7D } Closing brace
126 7E ~ Equivalency sign - tilde
127 7F Delete

(C) Lucid Technologies

11

8-bit Object File Tool Software

APPENDIX B
INTEL HEX-RECORD FORMAT

INTRODUCTION

Intel's Hex-record format allows program or data files to be encoded in a printable (ASCII) format.
This allows viewing of the object file with standard tools and easy file transfer from one computer
to another, or between a host and target. An individual Hex-record is a single line in a file composed
of many Hex-records.

HEX-RECORD CONTENT

Hex-Records are character strings made of several fields which specify the record type, record
length, memory address, data, and checksum. Each byte of binary data is encoded as a 2-character
hexadecimal number: the first ASCII character representing the high-order 4 bits, and the second the
low-order 4 bits of the byte.

The 6 fields which comprise a Hex-record are defined as follows:

Field Characters Description

1 | Start Code 1 An ASCII colon, ":".

2 | Byte Count 2 The number of bytes (character pairs) in the data field.
Byte Count is typically 16.

3 | Address 4 The 2-byte address at which the data field is to be loaded
into memory.

4 | Type 2 00 or O1.

5 | Data 2(Byte Count) Each data byte is represented in hexadecimal format by
two ASCII characters.

6 | Checksum 2 The least significant byte of the two's complement sum of
all the bytes in the record except the Start Code and
Checksum.

Each record may be terminated with a CR/LF/NULL. Accuracy of transmission is ensured by the
byte count and checksum fields. Because the data field is composed of character pairs, each pair
being one 8-bit byte, Intel Hex-record files are commonly used with 8-bit processors. Because the
address field is only four characters, Intel Hex-record files are restricted to a 64 kilobyte address
space.

(C) Lucid Technologies 12

8-bit Object File Tool Software

HEX-RECORD TYPES

For 8-bit processors there are two possible types of Hex-records.

00 A record containing data and the 2-byte address at which the data is to reside.

01 A termination record for a file of Hex-records. Only one termination record is allowed per
file and it must be the last line of the file. There is no data field.

HEX-RECORD EXAMPLE
Following is a typical Hex-record module consisting of four data records and a termination record.

:10010000214601360121470136007EFE09D2190140
:100110002146017EB7C20001FF5F16002148011988
:10012000194E79234623965778239EDA3F01B2CAAT
:100130003F0156702B5E712B722B732146013421C7
:00000001FF

The first data record is explained as follows:
Start code.

10 Hex 10 (decimal 16), indicating 16 data character pairs,
16 bytes of binary data, in this record.

01 Four-character 2-byte address field: hex address 0100,
00 indicates location where the following data is to be loaded.

00 Record type indicating a data record.
The next 16 character pairs are the ASCII bytes of the actual program data.
40 Checksum of the first Hex-record.
The termination record is explained as follows:
Start code.
00 Byte count is zero, no data in termination record.

00 Four-character 2-byte address field, zeros.
00

01 Record type 01 is termination.

FF Checksum of termination record.

(C) Lucid Technologies 13

8-bit Object File Tool Software

APPENDIX C
MOTOROLA S-RECORD FORMAT

INTRODUCTION

Motorola's S-record format for output modules was devised for the purpose of encoding programs or
data files in a printable (ASCII) format. This allows viewing of the object file with standard tools
and easy file transfer from one computer to another, or between a host and target. An individual
S-record is a single line in a file composed of many S-records.

S-RECORD CONTENT

S-Records are character strings made of several fields which specify the record type, record length,
memory address, data, and checksum. Each byte of binary data is encoded as a 2-character
hexadecimal number: the first ASCII character representing the high-order 4 bits, and the second the
low-order 4 bits of the byte.

The 5 fields which comprise an S-record are defined as follows:

Field Characters | Description

1 | Type 2 S-record type - SO, S1 or S9.

2 | Record length | 2 The count of the bytes (character pairs) in the record,
excluding the type and record length.

3 | Address 4 The 2-byte address at which the data field is to be loaded into
memory.

4 | Data 0-2n From 0 to n bytes of executable code, or memory loadable
data. The number of Data bytes (n) is typically 16.

5 | Checksum 2 The least significant byte of the one's complement of the sum
of the values represented by the pairs of characters making up
the record length, address, and data fields.

Each record may be terminated with a CR/LF/NULL. Additionally, an S-record may have an initial
field to accommodate other data such as line numbers. Accuracy of transmission is ensured by the
record length (byte count) and checksum fields. Because the data field is composed of character
pairs, each pair being one 8-bit byte, S19 files are commonly used with 8-bit processors. Because
the address field is only four characters, S19 files are restricted to a 64 kilobyte address space.

S-RECORD TYPES

For 8-bit processors there are only three possible types of S-records.

SO A comment record; ignored by this program.

S1 A record containing data and the 2-byte address at which the data is to reside.

S9 A termination record for a file of S1-records. Only one S9-record is allowed per file and
it must be the last line of the file. The address field for directly executable code may

(C) Lucid Technologies 14

8-bit Object File Tool Software

optionally contain the 2-byte address of the instruction to which control is to be passed.
For ROM data the S9 address field is usually 0000. There is no data field.

S-RECORD EXAMPLE
The following is a typical S-record file:

S1130000285F245F2212226A000424290008237C2A
S11300100002000800082629001853812341001813
S113002041E900084E42234300182342000824A952
S107003000144ED492

S9030000FC

The file consists of four S1 records and an S9 termination record. The first S1 data record is
explained as follows:

S1

13

00
00

S-record type S1, indicating a data record to be loaded/verified at a 2-byte address.

Hex 13 (decimal 19), indicating 19 character pairs, representing 19 bytes of binary data,
follow; 2 bytes for address + 16 bytes for data + 1 byte checksum = 19 bytes.

Four-character 2-byte address field: hex address 0000,
indicates location where the following data is to be loaded.

The next 16 character pairs are the ASCII bytes of the actual program data.

2A Checksum of the first S1-record.

The second and third S1 data records also contain 0x13 character pairs each. The fourth S1 data
record contains 7 character pairs.

The S9 termination record is explained as follows:

S9

03

00
00

S-record type S9, indicating a termination record.
Hex 03, indicating three character pairs (3 bytes) to follow.

Four-character 2-byte address field.

FC Checksum of S9-record.

(C) Lucid Technologies 15

8-bit Object File Tool Software

APPENDIX D
STRAIGHT-HEX FORMAT
The straight-hex file format consists of two hex characters for each data byte in the file. The hex
characters are separated into lines with a Carriage Return, Line Feed sequence. The file contains no
address information nor any checksums. The 8-bit Tool software saves straight-hex files with an

SHX suffix.

Here is a straight-hex file example consisting of one line. It contains the data "Hello, World"
terminated by a Carriage Return (0D), Line Feed (0A) sequence.

48656C6C6F2C20576F726C640D0OA

Broken out for clarity:

48 65 6C o6C ©oF 2C 20 57 oF 72 6C 064 0D 0A
H e 1 1 o} , W o} r 1 d CR LF

(C) Lucid Technologies 16

